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Matchings in Bipartite graphs: the Hall’s Theorem

• Definition. A graph G = (V,E) is called bipartite, if its vertices can be partitioned into
two sets V1 and V2 such that any edge joints one in V1 with another in V2; equivalently, this
means that there is no edge inside each Vi for i = 1, 2.

We then call (V1, V2) as a bipartition of G. And it is well-known that graph G is bipartite
if and only if every cycle in G has even length.

• Definition. A graph G = (V,E) is d-regular, if the degree of any vertex in G is equal to d.

• Definition. A matching X in a graph G = (V,E) is a collection of edges in E such that
any two edges e, f ∈ X do not share common vertices as their ends (and we will say e and
f are independent).

A matching X also determines a subgraph of graph G, which is 1-regular.

We see that |X| ≤ |V |/2 for any matching X in graph G = (V,E).

• A matching X of graph G = (V,E) is perfect, if |X| = |V |/2.

• Given a matching X of graph G, a vertex u is called X-matched, if there exists some edge
e of X such that e is incident to vertex u.

• Given a graph G = (V,E) and a subset A ⊂ V of vertices, a matching X is called an
A-perfect matching, if |X| = |A| and any vertex a ∈ A is X-matched.

• For bipartite graph G with the bipartition (A,B) (assuming that |A| ≤ |B|), the largest
possible matching is an A-perfect matching, which may not exits.

We will study the necessary and sufficient condition for the existence of an A-perfect match-
ing for bipartite graphs.

• Definition. For graph G = (V,E) and subset S ⊂ V , the neighborhood of S in graph is
defined as

NG(S) := {v ∈ V − S : there exists u ∈ S such that u ∼G v}.

When there is no confusion, we also write NG(S) as N(S).

• It follows by its definition that if G is bipartite with bipartition (A,B), then for any S ⊂ A,
we have N(S) ⊂ B.

• The following classic theorem about bipartite graph G tells us when the largest possible
matching, an A-perfect matching, exists in G.

Hall’s Theorem. Let G = (V,E) be a bipartite graph with bipartition (A,B). Then, G
has an A-perfect matching if and only if G satisfies the following so-called Hall’s condition
or Marriage condition:

|N(S)| ≥ |S|, for any subset S ⊂ A.
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• One direction of the proofs is easy: if G has an A-perfect matching X, then G satisfies
Hall’s condition.

To see this, let A = {a1, ..., ak}, then we may assume that the A-perfect matching X is

X = {(ai, bi) : i = 1, ..., k},

where ai ∈ A, bi ∈ B. For any subset S := {ai1 , ..., ais} ⊂ A, we have {bi1 , ..., bis} ⊂ N(S),
implying that |N(S)| ≥ s = |S|. So such G must satisfy the Hall’s condition.

• We prove the another direction by induction on the size of A: if G is bipartite with bipar-
tition (A,B) and for any S ⊂ A, |N(S)| ≥ |S|, then G has an A-perfect matching.

The basic case here is trivial: consider |A| = 1. We then make our inductive hypothesis
saying that the desired statement holds for any G′ with bipartition (A′, B′), where |A′| ≤ |A|.
Here, A is from a bipartition (A,B) of G, which we are considering.

We will divide the remaining proof into two cases.

Case 1: for any subset S ⊂ A (except S = ∅ and S = V ), we have |N(S)| ≥ |S|+ 1.

We pick any edge (a, b) with a ∈ A, b ∈ B and consider G′ = G − {a, b}. Note G′ is still a
bipartite graph with parts A′ = A − {a}, B′ = B − {b}. We check that G′ always satisfies
the Hall’s condition (why?). Therefore by induction on |A′| < |A|, G′ has an A′-perfect
matching X ′. Now X = X ′ ∪ {(a, b)} gives us the A-perfect matching of G!

Case 2: there exists some S ⊂ A with 0 < |S| < |A| and |N(S)| = |S|.
Let T = N(S) ⊂ B with |S| = |T |. Consider the subgraph G1 induced by the vertex set
S ∪ T and the subgraph G2 = G−G1. First, we see that G1 and G2 are bipartite as well.
Then we check that both of G1 and G2 satisfy the Hall’s condition (the proof here is omitted
but you really need to see why it is the case!), therefore by induction, G1 has an S-perfect
matching X1 and G2 has an (A− S)-perfect matching X2. Then X = X1 ∪X2 gives us the
A-perfect matching of G as we want!

This finishes the proof of the Hall’s theorem.

Mathcings in general graphs: alternating/augmenting paths

• Before we introduce alternating/augmenting paths, we see an application of the Hall’s The-
orem.

• Corollary. For any integer d ≥ 1, any d-regular bipartite graph G (say with bipartition
A,B) has a perfect matching.

The proof contains two steps. The first step is to show the two parts A and B are of equal
size by considering the total number of edges, which equals

∑
v∈A d(v) = d|A| and aslo

equals
∑

v∈B d(v) = d|B|.
The second step is to show that G satisfies Hall’s condition, therefore G has an A-perfect
matching, which in this case is also a perfect matching. To see the Hall’s condition for G,
consider any S ⊂ A. Let E1 be the set of edges incident to S and let E2 be the set of edges
incidents to N(S). By definition, we should have E1 ⊂ E2. But we also have

|E1| =
∑
v∈S

d(v) = d|S| and |E2| =
∑

v∈N(S)

d(v) = d|N(S)|,
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which implies that |N(S)| ≥ |S|.

• We turn to study the matchings for general graphs (not necessary bipartite graphs now).

Definition. Given a matching X of graph G = (V,E),

– a path P = v1 − v2 − v3 − . . . − vk in G is an X-alternating path, if the edges in P
alternates between edges in X and edges not in X;

– an X-alternating path P = v1 − v2 − v3 − . . . − vk is an X-augmenting path, if v1, vk
are not X-matched.

• Remark. The intuition for the X-augmenting path is: if one can find such path P , then
we can find a larger matching X ′ from X, by deleting all edges of P in X and adding all
edges of P not in X!

• A graph G = (V,E) is connected if for any two vertices u, v, there exists a path of G from
u to v.

• A component of a graph G = (V,E) is a maximal connected subgraph of G.

• We show the coming lemma first before raising our main theorem about augmenting path.

Lemma. For any graph H, if degree of any vertex is at most 2, then any component of H
is either an isolated vertex, or a path or a cycle. Moreover, each vertex of degree 1 must be
an endpoint of some path in H.

• Sketch proof of Lemma. By induction on number of vertices. Base case is trivial. Now pick
a vertex v with minimum degree in H. There are three cases.

If d(v) = 0, then v is an isolated vertex; by induction on H−v, it is easy to see the statement
holds for H.

If d(v) = 1, then let u be the unique neighbor of v in H. The degree of vertex u in H − v
is either 1 or 0. By induction on H − v, the vertex u is either an isolated vertex of H − v
or is an endpoint of a path of H − v; in the later case, adding back edge (u, v), now v is an
endpoint of a path in H!

If d(v) = 2, then all vertices have degree 2. In this case, all vertices are of degree 2 in H,
as d(v) = 2 is also the minimum degree of H. Then all vertices (except the two neighbors
of v of degree 1) are of degree 2 in H − v. By induction on H − v, the two neighbors of v
must be the two endpoints of a path P in H − v. Adding v back, then P becomes a cycle
of H containing v.

• The coming theorem tells us a way to determine the maximum matching for general graphs.

Theorem. Let X be any matching in graph G = (V,E). Then, X is a matching of G with
maximum size if and only if there exist NO X-augmenting path in G.

• We prove one direction of first: if X is a matching of G with maximum size, then there is
NO X-augmenting path.

To see this, suppose for a contradiction, that there is an X-augmenting path P in G. We
will also view P as the set of edges which are from path P . By the previous Remark, the
obtained X ′ in fact is the symmetric difference P 4X := P ∪X − P ∩X, which is also a
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matching of G; moreover, we know P has one more edges not in X than edges in X (as P
is X-augmenting), so we get |X ′| = |X|+ 1 (think why this is true), so X ′ turns out to be
a matching with more edges than X, which is a contradiction to the assumption that X is
maximum!

• For the another direction, we want to show that if there is no X-augmenting path, then X
is maximum.

Suppose for a contradiction that X is not maximum. Then, there is some matching X ′ with
|X ′| > |X|. Consider the subgraph H := (V,X ′4X), where again X ′4X is defined to be
the symmetric difference between edge sets X ′ and X, that is X ′ ∪X −X ′ ∩X.

Fact 1. H has more edges of X ′ than X, as its edge set X ′ 4X is obtained from X ′ ∪X
by deleting the intersection X ′ ∩X.

Fact 2. The degree of any vertex in H is at most 2. This is because all edges in H are
from either X or X ′; but every vertex can only have at most 1 edge from a matching.

Therefore, by the lemma we proved above, any one of the components D1, D2, ..., Dt in H
is either an isolated vertex, or a path or a cycle. We now consider an arbitrary component
Di and want to compare the number of edges in Di from X with the number of edges from
X ′.

Case 0: when component Di is an isolated vertex. There is no edge in Di.

Case 1: when component Di is a cycle. Because the edges of cycle in H have to alternate
between edges of X and edges of X ′, such cycle must be a cycle of even length with the
equal number of edges from X and from X ′.

Case 2: when component Di is a path. Then there are three types of paths. Note that the
edges of path also have to alternate between edges of X and edges of X ′.

– Type I is a path with both of the initial edge and the last edge from X. Then path
Di has more edges of X than X ′.

– Type II is a path with one of initial edge and last edge from X and another from X ′.
Then path Di has equal number of edges from X and from X ′.

– Type III is a path with both of the initial edge and the last edge from X ′. Then path
Di has more edges of X ′ than X!

By Fact 1, we know H (and therefore all D1, D2, ..., Dt) has more edges of X ′ than X.
Notice that only the type III path will have more edges of X ′ than X; all other types have
edges of X ′ which are no more than X! Therefore, there must be a component Di of type
III occurring! Such path Di must be an X-augmenting path, which is a contradiction as
the condition assumes no X-augmenting path. We finish the proof of theorem.
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